USE OF RGB DRONE SENSORS TO ESTIMATE VEGETATION BIOMASS IN A SEMIARID REGION

Uso de sensores RGB em drones para estimar biomassa vegetal em uma região semiárida

Autores/as

  • Cássia Kellen Lopes FONSECA Universidade Federal de Pernambuco
  • Aldo Torres SALES Instituto Agronômico de Pernambuco.
  • Josimar Gurgel FERNANDES Instituto Agronômico de Pernambuco
  • Everardo Valadares de Sá Barreto SAMPAIO Universidade Federal de Pernambuco
  • Antônio Samuel Alves da SILVA Universidade Federal Rural de Pernambuco
  • Rômulo Simões Cezar MENEZES Universidade Federal de Pernambuco

DOI:

https://doi.org/10.5016/geociencias.v43i4.18383

Resumen

RESUMO - As estimativas dos estoques de biomassa vegetal em pastagens utilizando técnicas de sensoriamento remoto, apesar de serem amplamente utilizadas ultimamente, ainda são incertas devido ao padrão tridimensional e desigual de crescimento da vegetação. Foi definida uma metodologia para estimar os estoques de biomassa no semiárido de Pernambuco, Brasil, utilizando uma câmera RGB de alta definição acoplada a um drone. Os sobrevoos foram realizados em áreas de floresta tropical seca densa e aberta e pastagens, nas estações seca e chuvosa. A biomassa medida em campo foi relacionada a nove índices de vegetação do espectro visível por meio de regressão linear múltipla. Os coeficientes de determinação variaram entre 0,73 e 0,82. Os modelos mostraram-se uma forma viável de estimar a biomassa, considerando a amplitude espacial e temporal do estudo, as características da vegetação e os tipos de cobertura do solo avaliados. Sensores RGB são promissores para estimar biomassa em regiões semiáridas, especialmente integrados a índices de vegetação.

Palavras-chave: Geotecnologias. Espectro visível. Índices de vegetação. Pasto. Floresta seca.

 

ABSTRACT - Remote sensing techniques are currently widely used in environmental analysis due to the ability to collect accurate data in a cheaper and easier way than conventional techniques. However, estimates of vegetation biomass stocks in rangelands using remote sensing techniques are still uncertain due to the tridimensional and uneven growth pattern of the vegetation. A methodology was defined to estimate biomass stocks in different land cover types in the semi-arid region of Pernambuco state, Brazil, using a high definition RGB camera coupled to a drone. Flyovers 30 m above ground level were performed in three field experiments, in areas of dense and open tropical dry forest and pastures, during the dry and rainy seasons. Biomass measured in field was related to nine visible spectrum vegetation indices as independent variables, using multiple linear regression. The determination coefficients ranged between 0.73 and 0.82. The models proved to be a feasible way to estimate the biomass, considering the spatial and temporal amplitude of the study, the vegetation characteristics and the types of soil cover evaluated, which could be improved with the addition of more sampling points. We conclude that RGB sensors are promising to estimate biomass in semiarid regions, especially integrated with vegetation indices.

Keywords: Geotechnologies. Visible spectrum. Vegetation índices. Pasture. Dry forest.

Biografía del autor/a

Cássia Kellen Lopes FONSECA, Universidade Federal de Pernambuco

Universidade Federal de Pernambuco.

Departamento de Energia Nuclear.

Avenida Professor Luiz Freire, 1000 - Cidade Universitária. Recife – PE

Aldo Torres SALES, Instituto Agronômico de Pernambuco.

Instituto Agronômico de Pernambuco.

Avenida General San Martin, 1371. Bongi. Recife – PE

Josimar Gurgel FERNANDES, Instituto Agronômico de Pernambuco

Universidade Federal de Pernambuco.

Departamento de Energia Nuclear.

Avenida Professor Luiz Freire, 1000 - Cidade Universitária. Recife – PE

Everardo Valadares de Sá Barreto SAMPAIO, Universidade Federal de Pernambuco

Universidade Federal de Pernambuco.

Departamento de Energia Nuclear.

Avenida Professor Luiz Freire, 1000 - Cidade Universitária. Recife – PE

Antônio Samuel Alves da SILVA, Universidade Federal Rural de Pernambuco

Universidade Federal Rural de Pernambuco.

Departamento de Estatística e Informática

Rômulo Simões Cezar MENEZES, Universidade Federal de Pernambuco

Universidade Federal de Pernambuco.

Departamento de Energia Nuclear.

Avenida Professor Luiz Freire, 1000 - Cidade Universitária. Recife – PE

Descargas

Publicado

2024-12-19

Número

Sección

Artigos